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Abstract. This paper presents a novel method for separating reflection compo-
nents in a single image based on the dichromatic reflection model. Our method is
based on a modified version of sparse non-negative matrix factorization (NMF).
It simultaneously performs the estimation of body colors and the separation of
reflection components through optimization. Our method does not use a spatial
prior such as smoothness of colors on the object surface, which is in contrast
with recent methods attempting to use such priors to improve separation accu-
racy. Experimental results show that as compared with these recent methods that
use priors, our method is more accurate and robust. For example, it can better deal
with difficult cases such as the case where a body color is close to the illumination
color.

1 Introduction

This paper considers the problem of separating reflection components (i.e., specular and
diffuse reflections) in a single image. It is useful for several purposes. One is the use
with photometric methods, such as shape-from-shading [1, 2] and photometric stereo
[3]. As these methods often assume the surfaces of objects to be perfectly diffuse, it is
necessary to eliminate specular component before applying them to real objects having
specular reflectance. The separation of reflection components are also useful for the
visual recognition of materials of objects; the highlights extracted from images are used
as features for the recognition.

A large number of studies have been conducted to develop a method for accurately
and robustly separating reflection components in a single image [4–13]. Most of them
assume the dichromatic reflection model, which states that the light reflected on an
object surface is given by a linear sum of a specular component and a diffuse component
[4]. Specifically, the 3-vector ip containing the RGB values of a pixel p is given by

ip = αpis + βpid, (1)

where is is the color of the only illumination existing in the scene and id is the body
color (i.e., the color caused by diffuse reflection) of the object surface.

If multiple pixels p share the same illumination color is and the same body color id,
then Eq.(1) gives constraints on the variables on the right hand side. This is the principle
on which color-based methods for separating components in a single image rely. More
specifically, they commonly consider the following setting:
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– The object surface consists of multiple regions with different body colors, each of
which consists of a number of pixels with a single color id.

– The illumination color is is known. The body color id of each region and also which
region each pixel belongs to are unknown. The coefficients αp and βp are different
for each pixel p, both of which are also unknown.

Early studies [7, 8, 14] attempt to solve the problem within this setting. More recent
studies [9, 15, 10–13] attempt to utilize spatial information to improve separation accu-
racy. To do so, they incorporate spatial priors such as the smoothness of the body colors
and/or the specular reflections on the object surface.

Our method separates reflection components based on sparse non-negative matrix
factorization. It simultaneously performs the estimation of body colors and the separa-
tion of reflection components through optimization. It is notable that our method does
not use an additional prior or assumption as those used in the recent studies. In this
respect, our study runs counter to the recent trend of research, which is also the argu-
ment we make in this paper. That is, the above setting with the dichromatic model (1)
alone might be more sufficient than expected for accurate separation of reflection com-
ponents. In fact, as shown in the experimental results, our method is more accurate and
robust than the state-of-the-art that uses additional priors. As an additional prior is not
necessary, our method is free from tuning a number of hyper parameters.

2 Related work

The early approach to the problem is to determine body colors by analyzing the color
space. A number of studies [7, 8, 14] are fallen in this category, and they solve the
problem in two steps: (i) they determine the body colors first by analyzing the color
space onto which all the image pixels are projected, and (ii) then determine the other
unknowns using the results. The method of Klinker et al. [7] performs clustering of all
the pixels in the RGB color space to determine body colors. Bajscy et al. [8] used the
Hue-Saturation-Lightness color space instead of the RGB space. The method of Tan
and Ikeuchi [14] projects pixel colors along the direction of the illumination color to a
point of the lowest observed intensity to determine the body color. However, all these
methods tend to be vulnerable to the clutters in the color space, such as image noises
and color blending along the border of body colors.

To cope with this difficulty, more recent methods attempt to utilize spatial infor-
mation in the image [9, 15, 10–13]. Instead of determining body colors first, most of
these methods search for all the parameter values simultaneously through optimization.
Some of them use a specular-free image (or its extension), an image free from specular
components but with distorted diffuse components. It is created from the input image
usually by a simple, pixel-wise operation.

Tan and Ikeuchi [9] first proposed a method of this category. They showed a method
of creating the specular-free image by setting the maximum chromaticity of each pixel
to an arbitrary value. Based on this, they presented a method that iteratively separates
the reflection components by using a relation of two neighboring pixels. In their method,
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body colors are estimated gradually in such a way that information propagates from
outside highlight regions to inside them. This propagation often fails on the boundary
of body colors. It also cannot correctly deal with body colors having the same hue but
different saturation. To solve these problems, Tan et al. [10] proposed a method for
recovering diffuse components by using the texture information around highlights, but
it requires the positions of highlights to be known.

Yang et al. [12] extends the method of Tan and Ikeuchi by incorporating a more
explicit prior that the body colors should be smooth on the object surface. Their method
separates reflection components by applying a bilateral filter to the image of chromatic-
ity. The bilateral filter, whose range filter is determined according to chromaticity in-
formation, smoothes out specular reflections while maintaining the edges in the chro-
maticity image.

There are more studies that follow a similar approach. Shen et al. [11] proposed
another specular-free image that is obtained by subtracting the minimum of the RGB
values from them for each pixel. They proposed a simple separation method based
on it and also on an incorporated prior that the body color changes smoothly around
highlights. Although it is simple and fast, their method is less accurate than the above
methods, as it simplifies the problem too much, resulting in that Eq.(1) will no longer
be satisfied. Kim et al.’s [13] have recently proposed an optimization-based approach
that uses three different priors (i.e., the spatial smoothness of specular reflections and
body colors, and the number of body colors being as small as possible). They also
propose to apply the dark channel prior [16] to obtain another specular-free image,
although it is exactly the same as the one of Shen et al. [11]. Their method alternately
performs the following steps in an iterative manner: (i) cluster image pixels based on
the latest estimate of their chromaticity and (ii) apply an edge-preserving filter to the
result, followed by reassignment of labels. However, it remains unclear how accurate
their method is, since their experiments compare mostly with the method of Tan and
Ikeuchi [9] alone and not with that of Yang et al. [12], which is more close to their
method in that the smoothness of body colors is assumed and an edge-preserving filter
is used. Moreover, their method requires a number of hyperparameters (and it is unclear
how to choose them) and also the assumed three priors are too much and could narrow
the range of applicability.

3 Non-negative Matrix Factorization (NMF)

Our method is based on sparse non-negative matrix factorization (sparse NMF). Before
describing our method, this section briefly summarizes sparse NMF and its numerical
algorithm.

3.1 Basic NMF

NMF is a general-purpose method for multi-variate analysis. For data consisting of non-
negative values such as images and speech signals, it factorizes the data into additive
components. To be specific, a M × N matrix V containing only non-negative elements
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is factored into a product of a M × R matrix W and a R × N matrix H, both of which
similarly contain only non-negative elements:

V 'WH, (2)

or the j-th column vector v j of V is represented by a linear combination of the column
vectors wk’s of W weighted by the (k, j) element Hk, j of H as

v j '

R∑
k=1

wkHk, j. (3)

The factorization is obtained by minimizing some cost D(W,H) measuring the dif-
ference between V and its reproduction WH. For D(W,H), L2 norm

D(W,H) = ‖V −WH‖22 (4)

is widely used for general purposes, so is in our method. The generalized KL diver-
gence[17] and Itakura-Saito divergence[18] are sometimes used depending on prob-
lems.

Since an efficient iterative algorithm was developed by Lee et al.[17], NMF has
been applied to all sorts of problems, and various extensions have been made to the cost
function depending on problems[18–24]

3.2 Sparse NMF

An important extension is the sparse NMF that incorporates the sparse regularization
into the minimization[19]. It minimizes the following cost for the purpose of obtaining
H having as small a number of non-negative elements as possible.

F(W,H) =
1
2
‖V −WH‖22 + λ

∑
i, j

Hi, j. (5)

The second term on the right hand side follows the same relaxation as sparse coding[25]
that L0 norm is replaced by L1 norm. The minimization of this cost results in that each
data vector v j is represented by a linear combination of as small a number of bases (i.e.,
the column vector of W) as possible, as in sparse coding. Its difference from sparse
coding is that the resulting quantities are all non-negative.

A numerical algorithm for this sparse NMF, i.e., minimizing this cost under the con-
straints that W and H both have only non-negative entries is as follows. Starting from
initial values W and H that are usually initialized in a random manner, it alternately
iterates the following two updating rules until convergence:

H← H �
W̄>V

W̄>W̄H + λ
, (6a)

W←W �
VH> + W̄ � AW̄HH>

W̄HH> + W̄ � AVH>
, (6b)
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where W̄ represents a matrix obtained by normalizing each column vector of W; A is
the M×M matrix whose entries are all 1; � indicates the Hadamard product (entry-wise
product) and the division is similarly performed in the entry-wise manner. It is shown
[19] that this iteration always reaches a local minimum in a finite counts of iterations.

4 Separation of specular components by sparse NMF

4.1 Problem formulation

In this section, we present our formulation of the problem of separating reflection com-
ponents in a given image. Letting R − 1 be the number of body colors in the image
(or equivalently, R be the body colors plus one illumination color), we denote the body
colors by ik for k = 1, . . . ,R − 1. We assume that there is only a single illumination
color and denote it by a normalized vector is (i.e., ‖is‖2 = 1). Following the dichromatic
model (1), the color ip of a pixel p can be represented as

ip = αpis +

R−1∑
k=1

βk,pik, (7)

where βk,p has a nonzero value only for a unique k in [1, . . . ,R − 1] and is zero for all
other k’s, as the pixel color should be a linear sum of one body color and the illumination
color. Using L0 (counting) norm, this can be represented as

R−1∑
k=1

‖βk,p‖0 = 1, (8)

for any p. Note that the entries of ip, is, and ik as well as αp and βk,p have non-negative
values.

For the moment, we assume that the number of body colors to be known, or equiv-
alently, that R is known. Then, the separation problem is to estimate all the variables
but is on the right hand side of Eq.(7), under the constraint of Eq.(8) along with the
non-negativeness of these variables, given ip for a number of pixels p = 1, . . ..

This problem can be expressed compactly in a matrix form as the following con-
strained non-negative matrix factorization:

V = WH, (9a)

s.t.
R∑

i=2

‖Hi, j‖0 = 1 ( j = 1, . . . ,N), (9b)

where V a 3 × N matrix (N is the number of image pixels) whose columns store the
pixel colors ip’s for p = 1, . . . ,N; W is a 3 × R matrix defined to be

W = [is, i1, ..., iR−1]; (10)
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H is a R × N matrix storing αp and βk,p’s in its columns as

H =


α1 α2 · · · αN

β1,1 β1,2 · · · β1,N
...

...
. . .

...

βR−1,1 βR−1,2 · · · βR−1,N

 , (11)

where the order of the columns (i.e., the pixels) is the same as V; Hi, j is the (i, j) entry
of H. Note that the second equation is merely a rewritten version of Eq.(8). Note also
that the constraints of non-negative values are naturally implemented in the inherent
requirement of NMF. However, there is also a difference from usual NMF, which is that
not all the entries of W are unknown; when separating W into the body and illumination
colors and denoting it by

W = [is,Wd], (12)

we are to determine only the submatrix Wd.
In the presence of noises, it is natural to minimize

F(Wd,H) ≡ ‖V −WH‖22 (13)

under the constraint of (9b). The choice of L2 norm is rationalized if we assume i.i.d.
additive Gaussian noises with zero mean for each RGB value of each pixel. Then, the
problem turns to finding a solution to this constrained NMF.

4.2 Relaxation of the problem

The presence of the constraint with L0 norm makes it hard to directly solve the con-
strained minimization. Instead, we consider

F(Wd,H) =
1
2
‖V −WH‖22 + λ

N∑
j=1

R∑
i=2

‖Hi, j‖0. (14)

If there were no noise, the minimizer to this clearly gives the correct solution (i.e., the
minimizer (W,H) yields the exact V(= WH) and H satisfies the constraint (9b)), as
long as we choose a small λ. (We exclude here the case where there are two or more
possible factorizations for the given V.) The same argument basically remains true in
the presence of noises unless they are very large. However, one problem emerges in that
case, which originates from the fact that the illumination color can be used ’for free.’ For
example, the illumination color could be wrongly used to explain noises. Even worse,
it could also be used to explain pure diffuse colors, particularly for pixels having dark
colors. If a pixel’s color is dark (i.e., it is close to the origin in the RGB space), then
which color to choose tends not to change the L2 error much.

This necessitates imposing a certain penalty on choosing the illumination color. For
this purpose, we employ the same regularization for the illumination color and rewrite
the cost into

F(Wd,H) =
1
2
‖V −WH‖22 + λs

N∑
j=1

‖H1, j‖0 + λd

N∑
j=1

R∑
i=2

‖Hi, j‖0. (15)
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The newly added term requires as small a number of pixels as possible to have specular
components. Although the regularization parameters λs and λd can be arbitrarily cho-
sen, they have the same nature that they should be determined based on the comparison
against the strength of the noises. Thus, we set

λ = λs = λd. (16)

Eq.(15) is still difficult to directly minimize, because of the existence of L0 norm.
Following the popular relaxation strategy of replacing L0 norm with L1 norm, we con-
sider the minimization of

F(Wd,H) =
1
2
‖V −WH‖22 + λ

N∑
j=1

R∑
i=1

‖Hi, j‖1. (17)

Then, this is mostly the same as the cost for sparse NMF (Eq.(5)), although there is a
difference that not all entries of W are unknown in the above cost.

4.3 Modifying sparse NMF algorithm for separating reflection components

To deal with the difference of our problem from sparse NMF, we modify the algorithm
so that only the unknown submatrix Wd in W will be updated. To be specific, we revise
Eq.(6b) as

Wd ←Wd �
V′H>d + W̄d � AW̄dHdH>d
W̄dHdH>d + W̄d � AV′H>d

, (18)

where
V′ = V − ishs, (19a)

hs =
[
α1 · · · αN

]
, (19b)

and

Hd =


β1,1 · · · β1,N
...

. . .
...

βR−1,1 · · · βR−1,N

 . (20)

Here, A is the M × M matrix of all 1’s. This revised updating rule does not change is,
for which we set the known illumination color.

4.4 Determining R

We have assumed R (i.e., the number of body colors plus one) to be known so far. It is
unknown in reality, and thus needs to be determined.

Our problem is originally to factorize a matrix containing the image into a product
of non-negative matrices under the constraint (8); the constraint is such that a pixel
color should be given by a linear combination of the illumination color and a single
body color chosen from multiple candidates. This is relaxed to the minimization of
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R = 4 5 6 7

Fig. 1. The separation results obtained by our method for different R’s. Upper row: Diffuse com-
ponents. Lower row: Specular components. The original image is shown in the top-left corner of
Fig.6.

(17), which we expect to give a good solution. If it indeed gives a good solution, the
solution will satisfy the constraint (8) at least approximately.

Thus, we incorporate a measure of how well a solution satisfies this constraint and
search for R in an exhaustive manner using the measure. Specifically, computing a num-
ber of solutions for multiple different R’s, we choose the solution with the highest mea-
sure. For this measure, we define

score(H) =
1
N

N∑
j=1

maxi∈[2,R] Hi, j∑R
i=2 Hi, j

. (21)

This score is in the range [0,1] and returns 1 if the above constraint is fully satisfied. For
a dark pixel without specular component, however, its diffuse component could be zero,
making the score of the pixel also zero. Therefore, we choose the solution returning the
highest score.

It seems difficult to determine the number of body colors for real images, because
a certain amount of ambiguity has to be involved in the determination. Fortunately, our
method tends not to be sensitive to the choice of R. As shown in Fig.1, it yields almost
the same separation result for a certain range of R.

5 Experimental results

We conducted several experiments to examine the effectiveness of the proposed method
and compare its performance with existing methods. For them, we choose Tan-Ikeuchi
[9] and Yang et al. [12]; we used the authors’ code1 2 in the experiments. We exclude
Kim et al. [13], since its repeatability is limited due to lack of information. The method

1 http://www.staff.science.uu.nl/ tan00109/code.html
2 http://www.cs.cityu.edu.hk/ qiyang/publications.html
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has a lot of tunable parameters, and the paper does not show how to choose them. (For
example, the threshold of chromaticity distance between regions to be merged, after
k-means clustering, in Sec.6.1 of [13]; it is unclear what edge-preserving filter is used
for computing λ in Sec.6.2; the convergence threshold κ is not shown, and so on.) Note
also that no authors’ implementation is available.

5.1 Parameters and initial values

We set the weight of the sparse regularization λ = 3 throughout the experiments. For
each image, we iterated the modified sparse NMF until it converges. The convergence
is judged by

|Ft − Ft−1| < ε|Ft |, (22)

where Ft and Ft−1 are the values of the cost (17) at iteration count t and t − 1, respec-
tively; we set ε to be exp(−18).

The initial values of H and Wd are generated by uniform random numbers over
[1, 255], and each column vector of Wd is normalized to have length 1. We set the illu-
mination color is to be 1

√
3
[1, 1, 1]> in all the experiments. As is described in Section 4.4,

we choose the solution yielding the best score (21) among those obtained for different
R in the range [3,12]. The (modified) sparse NMF is not guaranteed to find the global
optimum. In fact, we confirmed in our experiments that it was occasionally trapped in
apparent local minima. Thus, we run it three times with different initial values for each
value of R, and choose the solution yielding the best score among all the solutions thus
obtained.

From Wd and H of the best solution, the specular and diffuse components are re-
constructed by

Is = ishs, (23)

and
Id = WdHd, (24)

respectively.

5.2 Synthetic images

We first applied the three methods to a synthetic image shown in Fig.2 and its results
also are shown in there. The parenthesis below each image show the error (RMSE) of
the separated specular components. From the separation results, our method is the best
in terms of accuracy; Tan-Ikeuchi is clearly erroneous, and Yang et al. is better than
Tan-Ikeuchi but has an erroneous horizontal line between the two regions on the left.
These are also confirmed by the error values in the parentheses.

When a body color is close to the illumination color, the separation will be difficult.
We compare the behaviors of the three methods in such situations. We created the im-
ages of a sphere with a single body color [R,G, B] = [1, 1, x] by varying x = 0.1, 0.3,
and 0.9. As the illumination color is [1, 1, 1], the separation is more difficult as x goes
to 1. Figure 3 shows the results for these images. Tan-Ikeuchi could not separate the
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input Ground Truth Proposed(0.89) Tan et al.(7.7) Yang et al.(2.1)

Fig. 2. Input image, ground truth, and separation results by the three methods. The numbers in
the parentheses indicate the errors of the separated specular components.

[1
,1
,0
.1

]
[1
,1
,0
.3

]
[1
,1
,0
.9

]

Input Diffuse Specular Diffuse Specular Diffuse Specular Diffuse Specular

True Proposed Tan et al. Yang et al.

Fig. 3. The results when the body color is close to the illumination color. From top row to bottom,
[R,G, B] = [1, 1, 0.1], [1,1,0.3], and [1,1,0.9].

components at all, as they assume R , G , B for every pixel. The results of Yang et
al. tend to be worse with increasing x; the separated specular components appear to be
smaller than their true values. Our method yields clearly better separation results.

5.3 Real images

We then show results for real images. We first show the results for the dataset of [9] that
is available from the author’s site 3 and is widely used in previous studies.

We first tested robustness to image noises. We added zero-mean Gaussian noise
with σ = 0.1, 1.0, and 5.0 to each pixel (ranging in [0,255]) of each channel of an input
image. Figure 4 shows the results for different levels of the noise. It is seen that the three
methods are almost equally robust to noises, although Tan et al. is slightly less robust
than the other two.

3 http://www.staff.science.uu.nl/ tan00109/code.html
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σ
=

0.
0

σ
=

0.
1

σ
=

1.
0

σ
=

5.
0

Input Proposed Tan et al. Yang et al.

Fig. 4. Results for noisy input images. Zero-mean Gaussian noises with σ = 0.1, 1.0, and 5.0 are
added to each pixel of each channel of the original image of the top row.

Many existing methods assume a linear mapping between the image irradiance and
the corresponding pixel value. Calibrating the response function of the camera will
make the assumption true, but the calibration will include a certain amount of errors.
We may simulate such errors by transforming each pixel value x into x1/γ. To examine
the performance of the methods in the presence of such calibration errors, we generated
a number of images in this way and applied the three methods to the images. The results
are shown in Fig.5.

We may consider a separation result for each γ value to be more accurate if it is
closer to that for γ = 1.0 (the original image). Table 1 shows the errors in this accuracy
measure. It is seen that our method is significantly better than Tan-Ikeuchi and is slightly
better than Yang et al.

Table 1. The errors of separation results for each γ. Each number shows the difference of the
separation result (i.e., specular component) from that for γ = 1 obtained by the individual method.

γ Proposed Tan-Ikeuchi[9] Yang et al.[12]
1.0 0.0 0.0 0.0
1.1 0.77 5.3 1.8
1.3 1.9 9.5 4.0
1.5 3.3 14.7 5.7
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γ
=

1.
0

γ
=

1.
1

γ
=

1.
3

γ
=

1.
5

Input Proposed Tan et al. Yang et al.

Fig. 5. Results for images whose brightness is disorted by transforming each pixel value x to x1/γ.
See Table 1 for quantitative comparisons.

Unlike other methods, our method does not assume a prior on spatial information
such as the smoothness of body colors. To show the difference of our method from
others, we intentionally destroyed the spatial relationship of pixels and applied the three
methods to the resulting images. To be specific, we transform an image by dividing it
into patches of w × w pixels in a grid manner and then randomly shuffle these patches
to generate an image. Figure 6 shows the results. Note that the displayed images have
been transformed back by the inverse of the above transformation (except for the input
images). The three rows correspond to w = ∞(no shuffle), 5 × 5, and 1 × 1(pixelwise),
respectively. Tan-Ikeuchi is somewhat robust to this geometric transformation, as it uses
only the relationship between the neighboring pixels, whereas Yang et al. is less robust;
it completely fails separation at w = 1.

Finally, we show the results for other real images in Fig.7. Although there is no
ground truth and thus it is difficult to evaluate separation accuracy, it is observed that
Tan-Ikeuchi clearly yields excessive amount of specular components; the results of
Yang et al. are slightly better, but its tendency is the same; our method provides much
better results than the others. It should be noted that in the results from third to fifth
rows, some of the pixels have zero diffuse components, which are caused by saturation
of the brightness. It violates the assumed model, and it is no wonder that the correct re-
sults are not obtained. We nevertheless show the result to demonstrate how the methods
can handle the real-world images having saturated pixels.
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w
=
∞

w
=

5
w

=
1

Input Proposed Tan et al. Yang et al.

Fig. 6. The results for images undergoing patch-wise geometric shuffling. The image at the top-
left corner is divided into w × w patches and randomly shuffled (the leftmost column). The sepa-
ration results are transformed back by the inverse of the shuffling.

Input Proposed Tan et al. Yang et al.

Fig. 7. The results for other real images.

6 Summary and discussions

This paper has shown a method for separating reflection components based on sparse
NMF. The method is characterized by that it simultaneously performs the estimation of
body colors and the separation of reflection components through the NMF-based opti-
mization. The experimental results show that the method yields more accurate separa-
tion results than the state-of-the-art that incorporates spatial priors such as the smooth-
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ness of body colors. This shows that the basic problem setting with the dichromatic
model alone might be more sufficient than expected for accurate separation of reflection
components. Our sparse NMF-based method can successfully find an accurate solution
through optimization, owing to the good numerical property of NMF.

The main contribution of this study is not necessarily the proposed method itself
but rather the finding that the problem can be solved more simply than thought. Earlier
studies use spatial priors, whereas our method does not use spatial information at all,
and nevertheless yields reasonably better results. We suspect that our NMF formulation
can better utilize the constraints given by the dichromatic model along with the implicit
surface color model (i.e., surfaces consist of multiple uni-colored regions). This will be
further investigated in our future study.
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